Evaluating 11 Years of Quantitative Precipitation Forecast (QPF) Performance for Extreme Events

E. Sukovich^{1,2}, F. M. Ralph¹, David Novak³, Faye Barthold^{3,4}, and D. Reynolds^{1,2}

3rd NOAA Testbed & Proving Ground Workshop 1-3 May 2012, Boulder, CO

¹NOAA/ESRL Physical Sciences Division, Boulder, CO ²University of Colorado, CIRES, Boulder, CO ³NOAA/NWS/NCEP Hydrometeorological Prediction Center, Camp Springs, MD ⁴I.M. Systems Group, Inc., Rockville, MD

Motivation

Many key end-users of QPFs require accurate forecasts (e.g., location, timing, and amount of precipitation) of extreme precipitation events.

Objective

To define and baseline performance of extreme precipitation events from 2001 to 2011.

Context

Hydrometeorological Testbed (HMT) activities at both ESRL/PSD and NCEP/HPC have led to the development of this work.

How are QPFs monitored?

NOAA QPF Government Performance and Results Act measure is based on Day-1 (24 h) 1.0 inch 24 h⁻¹ threshold

Forecast and Evaluation Data

Evaluation Period: 1 January 2001 - 31 December 2011

HPC CONUS QPFs

- Obtained from the NPVU
- Resolution of 32-km
- Forecasts made from 12 Z to 12 Z
- Day 1 (24 h), Day 2 (48 h), and Day 3 (72 h)

RFC Quantitative Precipitation Estimates (QPE)

- Obtained from the NPVU
- Stage IV data
- Resolution of 32-km (upscaled from 4km)
- Accumulated precipitation from 12 Z to 12 Z

Methodology

Defining Extreme Events

- Find all wet days at each 32-km grid point within the RFC region
- Calculate the 99th and 99.9th percentile thresholds (i.e., top 1.0% and 0.1% of events)

Analysis

- Calculate POD, FAR, CSI, MAE, and bias per Ralph et al. (2010) using Developmental Testbed Center (DTC) Model Evaluation Tools (MET) software.
- Compare to GPRA threshold of 1.0 in 24 h⁻¹

Regional top 1.0% precipitation thresholds

Regional top 0.1% precipitation thresholds

Event Sampling

Extreme QPF Performance

Mean Absolute Error and Bias

Top 1.0% Events by Lead Time

Extreme Events by Season

Top 1.0% Events by Season and Lead Time

Summary

- QPF performance was baselined over 11 years (2001-2011) for extreme precipitation events.
- Regional extreme precipitation thresholds (1.0% and 0.1%) were determined for each RFC region for the specific QPE dataset.
- Five measures were used to assess extreme QPF performance (POD, FAR, CSI, bias and MAE).
 - Extreme precipitation performance has been improving since 2001.
 - Longer lead times have lower performance values.
 - Cool season outperforms warm season.

Thank you